RETRIGGERABLE MONOSTABLE MULTIVIBRATORS

These dc triggered multivibrators feature pulse width control by three methods. The basic pulse width is programmed by selection of external resistance and capacitance values. The LS122 has an internal timing resistor that allows the circuits to be used with only an external capacitor. Once triggered, the basic pulse width may be extended by retriggering the gated low-level-active (A) or high-level-active (B) inputs, or be reduced by use of the overriding clear.

- Overriding Clear Terminates Output Pulse
- Compensated for V_{CC} and Temperature Variations
- DC Triggered from Active-High or Active-Low Gated Logic Inputs
- Retriggerable for Very Long Output Pulses, up to 100% Duty Cycle
- Internal Timing Resistors on LS122

SN54/74LS123 (TOP VIEW) (SEE NOTES 1 THRU 4)

SN54/74LS122 (TOP VIEW)
(SEE NOTES 1 THRU 4)

NC - NO INTERNAL CONNECTION.

NOTES:

1. An external timing capacitor may be connected between $\mathrm{C}_{\text {ext }}$ and $\mathrm{R}_{\text {ext }} / \mathrm{C}_{\text {ext }}$ (positive).
2. To use the internal timing resistor of the LS122, connect $\mathrm{R}_{\text {int }}$ to V_{CC}.
3. For improved pulse width accuracy connect an external resistor between $R_{\text {ext }} / C_{e x t}$ and V_{CC} with $\mathrm{R}_{\text {int }}$ open-circuited.
4. To obtain variable pulse widths, connect an external variable resistance between $\mathrm{R}_{\text {int }} / \mathrm{C}_{\text {ext }}$ and V_{CC}.

SN54/74LS122 SN54/74LS123

RETRIGGERABLE MONOSTABLE

 MULTIVIBRATORSLOW POWER SCHOTTKY
ORDERING INFORMATION
SN54LSXXXJ Ceramic
SN54LSXXXJ Ceramic
SN74LSXXXN Plastic
SN74LSXXXN Plastic
SN74LSXXXD SOIC
SN74LSXXXD SOIC

INPUTS					OUTPUTS	
CLEAR	A1	A2	B1	B2	Q	Q
L	X	X	X	X	L	H
X	H	H	X	X	L	H
X	X	X	L	X	L	H
X	X	X	X	L	L	H
H	L	X	\uparrow	H	Ω	บ
H	L	X	H	\uparrow	Ω	บ
H	X	L	\uparrow	H	Ω	บ
H	X	L	H	\uparrow	Ω	บ
H	H	\downarrow	H	H	Ω	บ
H	\downarrow	\downarrow	H	H	Ω	บ
H	\downarrow	H	H	H	Ω	บ
\uparrow	L	X	H	H	Ω	บ
\uparrow	X	L	H	H	Ω	บ

LS123 FUNCTIONAL TABLE

INPUTS			OUTPUTS	
CLEAR	A	B	Q	Q
L	X	X	L	H
X	H	X	L	H
X	X	L	L	H
H	L	\uparrow	Ω	U
H	\downarrow	H	Ω	Ψ
\uparrow	L	H	Ω	U

separate power supplies are used for V_{CC} and V_{RC}. If V_{CC} is tied to V_{RC}, Figure 7 shows how K will vary with V_{CC} and temperature. Remember, the changes in Rext and $\mathrm{C}_{\text {ext }}$ with temperature are not calculated and included in the graph.
As long as $C_{\text {ext }} \geq 1000 \mathrm{pF}$ and $5 \mathrm{~K} \leq \mathrm{Rext} \leq 260 \mathrm{~K}$ (SN74LS122/123) or $5 \mathrm{~K} \leq \mathrm{Rext} \leq 160 \mathrm{~K}$ (SN54LS122/123), the change in K with respect to $\mathrm{R}_{\text {ext }}$ is negligible.
If $\mathrm{C}_{\text {ext }} \leq 1000 \mathrm{pF}$ the graph shown on Figure 8 can be used to determine the output pulse width. Figure 9 shows how K will change for $\mathrm{C}_{\text {ext }} \leq 1000 \mathrm{pF}$ if V_{CC} and V_{RC} are connected to the same power supply. The pulse width tw in nanoseconds is approximated by
tw $=6+0.05 C_{\text {ext }}(\mathrm{pF})+0.45 R_{\text {ext }}(\mathrm{k} \Omega) \mathrm{C}_{\text {ext }}+11.6 R_{\text {ext }}$
In order to trim the output pulse width, it is necessary to include a variable resistor between V_{CC} and the $\mathrm{R}_{\text {ext }} / \mathrm{C}_{\text {ext }}$ pin or between V_{CC} and the $\mathrm{R}_{\text {ext }}$ pin of the LS122. Figure 10, 11, and 12 show how this can be done. Rext remote should be kept as close to the monostable as possible.

Retriggering of the part, as shown in Figure 3, must not occur before $\mathrm{Cext}_{\text {ex }}$ is discharged or the retrigger pulse will not have any effect. The discharge time of $\mathrm{C}_{\text {ext }}$ in nanoseconds is guaranteed to be less than $0.22 \mathrm{Cext}^{\mathrm{e}} \mathrm{pF}$) and is typically 0.05 $C_{\text {ext }}(\mathrm{pF})$.

For the smallest possible deviation in output pulse widths from various devices, it is suggested that $C_{\text {ext }}$ be kept $\geq 1000 \mathrm{pF}$.

GUARANTEED OPERATING RANGES

Symbol	Parameter		Min	Typ	Max	Unit
V_{CC}	Supply Voltage	$\begin{aligned} & 54 \\ & 74 \end{aligned}$	$\begin{gathered} \hline 4.5 \\ 4.75 \end{gathered}$	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	$\begin{gathered} \hline 5.5 \\ 5.25 \end{gathered}$	V
T_{A}	Operating Ambient Temperature Range	$\begin{aligned} & 54 \\ & 74 \end{aligned}$	$\begin{gathered} -55 \\ 0 \end{gathered}$	$\begin{aligned} & 25 \\ & 25 \end{aligned}$	$\begin{gathered} 125 \\ 70 \end{gathered}$	${ }^{\circ} \mathrm{C}$
${ }^{\mathrm{OH}}$	Output Current - High	54, 74			-0.4	mA
IOL	Output Current - Low	$\begin{aligned} & 54 \\ & 74 \end{aligned}$			$\begin{aligned} & \hline 4.0 \\ & 8.0 \end{aligned}$	mA
$\mathrm{R}_{\text {ext }}$	External Timing Resistance	$\begin{aligned} & 54 \\ & 74 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$		$\begin{aligned} & 180 \\ & 260 \end{aligned}$	k Ω
$\mathrm{C}_{\text {ext }}$	External Capacitance	54, 74	No Restriction			
$\mathrm{R}_{\text {ext }} / \mathrm{C}_{\text {ext }}$	Wiring Capacitance at $\mathrm{Rext} / \mathrm{C}_{\text {ext }}$ Terminal	54, 74			50	pF

WAVEFORMS

EXTENDING PULSE WIDTH

OVERRIDING THE OUTPUT PULSE

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

Symbol	Parameter		Limits			Unit	Test Conditions		
			Min	Typ	Max				
V_{IH}	Input HIGH Voltage		2.0			V	Guaranteed All Inputs	HIGH Voltage for	
VIL	Input LOW Voltage	54			0.7	V	Guaranteed Input LOW Voltage for All Inputs		
		74			0.8				
$\mathrm{V}_{\text {IK }}$	Input Clamp Diode Voltage			-0.65	-1.5	V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$,	-18 mA	
VOH	Output HIGH Voltage	54	2.5	3.5		V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{IOH}_{C}=\mathrm{MAX}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}$ or $V_{\text {IL }}$ per Truth Table		
		74	2.7	3.5		V			
V_{OL}	Output LOW Voltage	54, 74		0.25	0.4	V	$\mathrm{IOL}=4.0 \mathrm{~mA}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CC}} \mathrm{MIN}, \\ & \mathrm{~V}_{\text {IN }}=\mathrm{V}_{I L} \text { or } \mathrm{V}_{\text {IH }} \\ & \text { per Truth Table } \end{aligned}$	
		74		0.35	0.5	V	$\mathrm{IOL}=8.0 \mathrm{~mA}$		
${ }_{\text {IH }}$	Input HIGH Current				20	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$		
					0.1	mA	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=7.0 \mathrm{~V}$		
IIL	Input LOW Current				-0.4	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$		
Ios	Short Circuit Current (Note 1)		-20		-100	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$		
ICC	Power Supply Current	LS122			11	mA	$V_{C C}=\mathrm{MAX}$		
		LS123			20				

Note 1: Not more than one output should be shorted at a time, nor for more than 1 second.
AC CHARACTERISTICS $\left(T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}\right)$

Symbol	Parameter	Limits			Unit	Test Conditions
		Min	Typ	Max		
tpLHtPHL	Propagation Delay, A to \underline{Q} Propagation Delay, A to Q		23	33	ns	$\begin{aligned} & \mathrm{C}_{\mathrm{ext}}=0 \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{ext}}=5.0 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega \end{aligned}$
			32	45		
tpLH tPHL	Propagation Delay, B to Q Propagation Delay, B to Q		23	44	ns	
			34	56		
tpLH tPHL	Propagation Delay, Clear to Q Propagation Delay, Clear to Q		28	45	ns	
			20	27		
tw min	A or B to Q		116	200	ns	$\begin{aligned} & \mathrm{C}_{\text {ext }}=1000 \mathrm{pF}, \mathrm{R}_{\text {ext }}=10 \mathrm{k} \Omega, \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega \end{aligned}$
${ }_{\text {tw }}$ Q	A to B to Q	4.0	4.5	5.0	$\mu \mathrm{s}$	

AC SETUP REQUIREMENTS $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{C}}=5.0 \mathrm{~V}\right)$

Symbol	Parameter	Limits			Unit	Test Conditions
		Min	Typ	Max		
tw	Pulse Width	40			ns	

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5. K versus $\mathrm{V}_{\mathrm{C}} \mathrm{C}$

Figure 6. K versus V_{RC}

Figure 7. K versus $\mathrm{V}_{\mathbf{C C}}$ and V_{RC}

Figure 8

Figure 9

Figure 10. LS123 Remote Trimming Circuit

Figure 11. LS122 Remote Trimming Circuit Without Rext

Figure 12. LS122 Remote Trimming Circuit with Rint

Case 751B-03 D Suffix
16-Pin Plastic

Case 648-08 N Suffix

16-Pin Plastic

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILIIMETER
3. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
5. $751 \mathrm{~B}-01$ IS OBSOLETE, NEW STANDARD 751B-03.

	MILLIMETERS		INCHES		
DIM	MIN	MAX	MIN	MAX	
A	9.80	10.00	0.386	0.393	
B	3.80	4.00	0.150	0.157	
C	1.35	1.75	0.054	0.068	
D	0.35	0.49	0.014	0.019	
F	0.40		1.25	0.016	
G	1.27 BSC		0.049		
J	0.19	0.25	0.008	0.009	
K	0.10	0.25	0.004	0.009	
M	0°	7°	0°	7°	
P	5.80	6.20	0.229	0.244	
R	0.25	0.50	0.010	0.019	

NOTES
. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. DIMENSION "L" TO CENTER OF LEADS WHEN FORMED PARALLEL.
4. DIMENSION "B" DOES NOT INCLUDE MOLD FLASH.
5. ROUNDED CORNERS OPTIONAL
6. $648-01$ THRU -07 OBSOLETE, NEW STANDARD 648-08.

	MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
A	18.80	19.55	0.740	0.770
B	6.35	6.85	0.250	0.270
C	3.69	4.44	0.145	0.175
D	0.39	0.53	0.015	0.021
F	1.02	1.77	0.040	0.070
G	2.54 BSC	0.100 BSC		
H	1.27 BSC	0.050 BSC		
J	0.21	0.38	0.008	0.015
K	2.80	3.30	0.110	0.130
L	7.50	7.74	0.295	0.305
M	0°	10°	0°	10°
S	0.51	1.01	0.020	0.040

[^0]Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and ${ }^{\text {d }}$ / are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

Literature Distribution Centers:

USA: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036.
EUROPE: Motorola Ltd.; European Literature Centre; 88 Tanners Drive, Blakelands, Milton Keynes, MK14 5BP, England.
JAPAN: Nippon Motorola Ltd.; 4-32-1, Nishi-Gotanda, Shinagawa-ku, Tokyo 141, Japan.
ASIA PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Center, No. 2 Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong.

[^0]: NOTES:

 1. DIMENSIONING AND TOLERANCING PER ANS Y14.5M, 1982.
 2. CONTROLING DIMENSION: INCH
 3. DIMENSION L TO CENTER OF LEAD WHEN

 FORMED PARALLEL
 4. DIM F MAY NARROW TO 0.76 (0.030) WHERE THE LEAD ENTERS THE CERAMIC BODY.
 5. 620-01 THRU -08 OBSOLETE, NEW STANDARD 620-09.

 | | | | MILIMETERS | | INCHES | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | DIM | MIN | MAX | MIN | MAX | | |
 | A | 19.05 | 19.55 | 0.750 | 0.770 | | |
 | B | 6.10 | 7.36 | 0.240 | 0.290 | | |
 | C | - | 4.19 | - | 0.165 | | |
 | D | 0.39 | | 0.53 | 0.015 | | |
 | E | 1.27 | | 0.021 | | | |
 | FSC | 0.050 | | BSC | | | |
 | G | 2.54 | | 1.77 | 0.055 | | |

